Rigorous Test Flow for PLL using Jitter Measurement with VDD Sweeping 以變換電壓之下的抖動量測量 為基礎的鎖相迴路嚴格測試方法

Student: 李奕萱 (Yi-Hsuan Lee) Advisor: 黃錫瑜 教授 (Prof. Shi-Yu Huang)

IC-Design Exploration Lab Department of Electrical Engineering National TsingHua University, HsinChu, Taiwan

Outline

| Introduction

- Proposed Rigorous Test Flow for PLL using Jitter Measurement
- Experimental Results
 - **Conclusion**

Outline

Introduction

Proposed Rigorous Test Flow for PLL using Jitter Measurement
 Experimental Results
 Conclusion

Introduction

Verify Manufacturing of Circuit: System Reliability ↑ System Cost ↓ Testing Time ↓ Cost of Repair after Manufacturing ↓ Circuit quality ↑

Rigorous Built-in PLL Test

Why we need Rigorous Built-in Test Flow?

Why we need **Rigorous** Built-in Test Flow?

A functional test setup for a PLL device

"PM" denotes for Performance Metrics, Including frequency error and peak-to-peak jitters, etc.

VDD Sweeping

- Why we need Jitter Measurement with VDD Sweeping?
 - **Temperature** may be different
 - \rightarrow To cover the possible operating range
 - Thermal chamber → Temperature-to-VDD-mapping Scheme

Under-sampling Method [11][12][13][14]

Self-referenced TDC Method [15]

Sampling-based TDC Method [16][17]

[11]S. Sunter and A. Roy, "On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz," *IEEE Design & Test of Computers*, July-Aug., pp. 314-321, 2004.

[12]S. Sunter and A. Roy, "Purely Digital BIST for any PLL or DLL", *Proc. of IEEE European Test Symp.*, pp. 1-6, 2007.

[13]R. Kinger, S. Narasimhawsamy, and S. Sunter, "Experiences with Parametric BIST for Production Testing PLLs with Picosecond Precision", *Proc. of IEEE Int'l Test Conf.*, pp. 1-9, 2010.

[14]J.-J. Huang and J.-L. Huang, "An Infrastructure IP for On-Chip Clock Jitter Measurement", IEEE Int'l Conf. on Computer Design, pp. 1-6, 2004.

[15]P.-Y. Chou and J.-S. Wang, "An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit with Automatic Resolution Calibration for high PVT-Variation Resilience", *IEEE Trans. on Circuits and Systems-I: Regular Papers*, Vol. 66, No. 7, pp. 2508-2518, July 2019.

[16]J. Yu and F. F. Dai, "On-Chip Jitter Measurement Using Vernier Ring Time-to-Digital Converter," *Proc. of Asian Test Symp.*, pp. 167-170, 2010.

[17]T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, "Time-to-Digital Converter with Vernier Delay Mismatch Compensation for High Resolution On-Die Clock Jitter Measurement," *Digest of the Int'l Symp. on VLSI Circuits,* pp. 166-167, June 2008.

Under-sampling Method [11][12]

Indirect Measurement

Analyze the cumulative distribution of the jitter \rightarrow RMS jitter

Highest Resolution

Extra high-precision crystal oscillator[13] \rightarrow Cost \uparrow

[11]S. Sunter and A. Roy, "On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz," *IEEE Design & Test of Computers*, July-Aug., pp. 314-321, 2004.
 [12]S. Sunter and A. Roy, "Purely Digital BIST for any PLL or DLL", *Proc. of IEEE European Test Symp.*, pp. 1-6, 2007.
 [13]R. Kinger, S. Narasimhawsamy, and S. Sunter, "Experiences with Parametric BIST for Production Testing PLLs with Picosecond Precision", *Proc. of IEEE Int'l Test Conf.*, pp. 1-9, 2010.

Under-sampling Method [14]

Analyze the cumulative distribution of the jitter → RMS jitter
 Two-tap Delay Line → Not a coherent under-sampling clock
 Finite sample size

[14]J.-J. Huang and J.-L. Huang, "An Infrastructure IP for On-Chip Clock Jitter Measurement", IEEE Int'l Conf. on Computer Design, pp. 1-6, 2004.

Self-referenced TDC Method [15]

Indirect Measurement

Measure peak-to-peak jitter

PLL's output clock signal drive a Delay-Locked Loop

Period jitter \rightarrow phase error

Uncertainty of DLL \rightarrow measurement error \uparrow

[15]P.-Y. Chou and J.-S. Wang, "An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit with Automatic Resolution Calibration for high PVT-Variation Resilience", IEEE Trans. on Circuits and Systems-I: Regular Papers, Vol. 66, No. 7, pp. 2508-2518, July 2019.

Sampling-based TDC Method [16][17]

Direct Measurement

Analyze the cumulative distribution of the jitter \rightarrow RMS jitter

→ Measure over 100k TDC code. → Time-Consuming

[16]J. Yu and F. F. Dai, "On-Chip Jitter Measurement Using Vernier Ring Time-to-Digital Converter," *Proc. of Asian Test Symp.*, pp. 167-170, 2010.

[17]T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, "Time-to-Digital Converter with Vernier Delay Mismatch Compensation for High Resolution On-Die Clock Jitter Measurement," *Digest of the Int'l Symp. on VLSI Circuits,* pp. 166-167, June 2008.

We use min-Max TDC [24] jitter measurement method.

Direct Measurement

Measure peak-to-peak jitter

Continuously monitor the peak-to-peak jitter \rightarrow catch short-time glitches

On-line jitter validation

 ^[24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE Int'l Test Conf., (ITC), pp. 1-8, 2020.

Architecture of PLL Monitor

Definition:

- 1) The min-code and Max-code are the outputs of our PLL monitor and represents the minperiod and Max-period, respectively.
- 2) PPJA (Peak-to-Peak Jitter Amount) Code refer to the difference between min-code and

Max-code. It can represent the JJPA.

 [24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE Int'l Test Conf., (ITC), pp. 1-8, 2020.

Robustness Indicator – PPJA

PPJA is the **"robustness indicator"** in this work for weak device detection.

Reasons why PPJA is a better indicator than the RMS jitter :

	РРЈА	RMS jitter
Sensitive	20ps v	<mark>/s 2ps</mark>
Catch short-time transient performance hazard		
Performance	worst-case situation or weakness	only the average-case

Objectives of This Work

Objectives: More rapid and low cost.

Through our jitter measurement, we can transfer the PPJA code into the absolute Peak-to-Peak Jitter Amount value in pico-second unit. Online validation.

Classify weak device.

Built-in PLL test \rightarrow Prevent dangerous defects before manufacturing.

^[24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE Int'I Test Conf., (ITC), pp. 1-8, 2020.

Outline

Introduction

Proposed Rigorous Test Flow for PLL using Jitter Measurement Proposed Jitter Measurement

- Proposed Temperature-to-VDD-mapping Scheme
- **Experimental Results**
- Conclusion

Basic Fractional-N PLL

PLL used as a frequency multiplication circuit to generate high-speed on-chip clock generation. (e.g., 1 GHz clock)

• C.-E. Lee and S.-Y. Huang, "A Cell-Based Fractional-N Phase-Locked Loop Compiler," Proc. of IEEE Int'l Conf. on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD), pp. 273-276, (July 2018).

Implementation

✓ An adder and a simple shifter.

Test Flow

Test Flow

Training Stage

Interpretation Stage

Jitter Monitoring and Measurement Flow

Generation of Pivot Points

Example

[min-code, Max-code] = [28, 33]
↓ y = x + 970

[min-period, Max period] = [998ps, 1003ps]

PPJA = 1003-998 = 5ps

$$Clk_ref \longrightarrow avg-p-code$$

N.f

Outline

Introduction

Proposed Rigorous Test Flow for PLL using Jitter Measurement

Proposed Jitter Measurement

Proposed Temperature-to-VDD-mapping Scheme

- **Experimental Results**
- Conclusion

Classify a PLL Device

Do not oscillate. Low frequency accuracy.

Rigorous Test Flow

Temperature-to-VDD-mapping Scheme

None of the traditional tests strictly consider the effect of temperature.

Our DCO is a function of two-level control codes $<\beta$, $\gamma>$.

Different OP at Different Temperatures

Different operating points in the DCO profile at different temperatures.

OP(VDD, Temperature) = < β , γ >

Different OP at Different Temperatures

OP(VDD, Temperature) = < β , γ >

OP(1V, -40°C) = <2, 49> OP(1V, 25°C) = <3, 32> OP(1V, 125°C) = <4, 38>

It is much easier to change the VDD level than to change the temperature.

Define a term called "Equivalent VDD level".

Definition of Temperature-to-VDD-mapping Scheme

Equivalent VDD Level for a temperature:

 $OP(V_0, p) = OP(EV_p, p_{amb})$ $p = [-40^{\circ}C, 125^{\circ}C]$

Notation for Extreme Temperatures:

p-left is -40°C and *p-right* is 125°C.

Equivalent VDD level

To derive the Equivalent VDD Level for *p-left* and *p-right*. EV_{p-left} and $EV_{p-right}$. We use a successive approximation method: (Post-layout Simulation) **OP**(V₀, *p*-*left*) = < β_{left} , γ_{left} > (Vx gradually decreasing) When OP(V_x , $p_{ambient}$) = < β_{left} , γ_{left} > $V_x = EV_{p-left}$ Repeat Find EV_{p-right}

Transforming the Operating Conditions

Transforming the operating conditions from [-40°C, 125°C] at 1V to 25°C at [EV-40°C, EV125°C] V, while exercising the same "operating point range"(OP Range) in the DCO profile.

TDC Resolution Issue

The code resolution of the TDC is time-varying and affected by VDD level and temperature among other factors.

Decompose the entire test session into sub-session.
 → Code resolution is constant.

Outline

Introduction

Proposed Rigorous Test Flow for PLL using Jitter Measurement

Experimental Results

Jitter Measurement

Temperature-to-VDD-mapping Scheme

Conclusion

Layout

Layout in a 90nm CMOS Process

Power consumption = 4.339 mW.

The total area is 0.054 mm².

- The area of proposed Monitor is 0.021 mm².
- The area of ADPLL is 0.033 mm².

Outline

Result of 3 pivot points for 1GHz PLL

The 3 pivot points for 1GHz PLL

Divert	Dithering	Multiplicative Factor (N.f)	Ideal	Actual Average	Average of the
Pivot	Dithering		Clock	of 128 Clock	128 Period Codes
Points	Size		Period	Period Samples	Reported
Center	0	41.67	1000ps	999.97ps	34.1
Left	-25ps	42.73	975ps	975.02ps	27.5
Right	+25ps	40.65	1025ps	1024.95ps	41.17

Example:

- 1) Pivot_{center}= (34.1, 1000ps) Pivot_{right}= (41.17, 1025ps) Pivot_{left}= (27.5, 975ps)
- 2) Linear Transfer Function: y=3.6562x+874.75
- 3) Resolution(LSB) = 3.6562ps
- 4) [min-code, Max-code] = [31, 38] ↓ y=3.6562x+874.75
- 5) [min-period, Max-period] = [991.75, 1013.69]

Result of 3 pivot points for 1GHz PLL

Result of Jitter Measurement

Jitter measurement results for 2 ADPLL designs.

Target	Taugat Clask		Peak-to-Peak Jitt	er (ps)		F *	
Frequency (MHz)	Period (ps)	Avg. Clock Period (ps)	Direct Waveform Analysis	Ours	of our TDC (ps)	n Error*) (ps)	
1000	1000	1000.06	20.71	21.94	3.6562	1.23	
1152	868	868.14	16.5	17.72	3.5433	1.22	
						* Error < 1LSB	

- Due to the simulation time, we only set clock period samples = 128.
- **Calibration Time = 110\mu s when clock period samples = 1024.**

Outline

Introduction Proposed Rigorous Test Flow for PLL using Jitter Measurement Experimental Results Jitter Measurement Temperature-to-VDD-mapping Scheme Conclusion

VDD level sweeping from 0.95V to 1.04V

OP(1V, -40°C) = <2, 49> = OP(1.04V, 25°C)										
➢ OP(1V, 125°C) = <4, 38> = OP(0.95V, 25°C)										
Mapping	Test	VDD	Avg. PLL's	Value	TDC's Code	Peak-to-Peak Jitter	(PPJA) (ps)			
Temn	Socion	Level	Output Clock	of PPJA	Resolution	Direct Waveform	Our	Error (ps)		
iemp.	36221011	(V)	Period (ps)	Code	(ps)	Analysis (Reference)	Method			
125°C	1	0.95	1000.032	7	3.53	22.29	24.71	2.42		
1	2	0.96	1000.432	12	3.53	42.00 m a	ax _{42.36}	0.36		
	3	0.97	999.506	10	3.54	34.59	35.4	0.81		
	4	0.98	1000.018	9	3.62	30.95	32.58	1.63		
ч 25°С	5	0.99	1000.745	9	3.64	29.54	32.76	3.22		
	6	1	1000.117	9	3.66	33.57	32.94	0.63		
	7	1.01	1000.497	8	3.73	28.12	29.84	1.72		
ŧ	8	1.02	1000.123	10	3.74	37.45	37.4	0.05		
-40°C	9	1.03	1000.124	8	3.75	32.70 m	n 30	2.7		

44

VDD level sweeping from 0.95V to 1.04V

Test	VDD Level	Avg. PLL's Output Clock	Value of PPJA Code	TDC's Code	Peak-to-Peak Jitter (PPJA) (ps)		Error				
Session	(V)	Period (ps)		Resolution (ps)	Analysis (Reference)	Method	(ps)				
1	0.95	1000.032	7	3.53	22.29	24.71	2.42				
2	0.96	1000.432	12	3.53	42.00 ma	X 42.36	0.36				
6	1	1000.117	9	3.66	33.57	32.94	0.63				
	min										
10	1.04	999.994	5	3.75	20.40	18.75	1.65				
		Reported Pl	JA range =	18.75ps, 42.30	psj,						

Wide-Range PPJA gap = 42.36 – 18.75 = 23.61ps

Nominal Reported PPJA at 1V = 32.94ps

Rigorous Test Gain = 42.36ps – 32.94ps = 9.42ps or (28.6%)

Outline

Introduction

Proposed Rigorous Test Flow for PLL using Jitter Measurement

Experimental Results

Conclusion

Conclusion

Faster clock period monitoring and jitter measurement scheme for a PLL with min-MAX TDC and Dithering-Based Calibration. 10ms \rightarrow 110 μ s.

- Support online jitter validation.
- (Map the digital code [min-code, Max-code] into the absolute amounts [min-period, Max-period] in pico-second.)
 - Classify PLL device by temperature-to-VDD-mapping scheme to support the transformation of test conditions to make the test easier.
- \rightarrow not using the support of a thermal chamber.

Thanks for your attention!

 [1] T. H. Kim, R. Persaud, and Chris H. Kim. "Silicon Odometer: An On-Chip Reliability Monitor for Measuring Frequency Degradation of Digital Circuits", IEEE Journal of Solid-State Circuits, Vol. 43, No. 4, pp. 874-880, 2008.

[2] Y. Li, Y. M. Kim, E. Mintarno, D. S. Gardner, and S. Mitra, "Overcoming Early-Life Failure and Aging for Robust Systems," IEEE Design & Test of Computers, Vol. 26, No. 6, pp. 28-39, 2009.

[3] C. Serafy and A. Srivastava, "Online TSV Health Monitoring and Built-In Self-Repair to Overcome Aging", Proc. of IEEE Int'l Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 224-229, 2013.

[4] G.-H. Lian, W.-Y. Chen, and S.-Y. Huang, "Cloud-Based Online Ageing Monitoring for IoT Devices", IEEE Access, Vol. 7, pp. 135954-135971, 2019.

[5] J. Carretero, X. Vera, P. Chaparro, and J. Abella, "Microarchitectural Online Testing for Failure Detection in Memory Order Buffer", IEEE Trans. on Computers, Vol. 59, No. 5, pp. 623-637, 2010.

[6] S.-F. Yang, Z.-Y. Wen, S.-Y. Huang, K.-H. Tsai, and W.-T. Cheng, "Circuit and Methodology for Testing Small Delay Faults in the Clock Network", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol. 37, No. 10, pp. 2087-2097, 2018.

[7] S.-Y. Huang, M.-T. Tsai, H.-X. Li, Z.-F. Zeng, K.-H. (Hans) Tsai, and W-.T. Cheng, "Non-Intrusive On-Line Transition-Time Binning and Timing Failure Threat Detection for Die-to-Die Interconnects," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol. 34, No 12, pp. 2039-2048, Dec. 2015.

[8] G.-H. Lian, S.-Y. Huang, and W.-Y. Chen, "Cloud-Based PVT Monitoring System for IoT Devices," Proc. of IEEE Asian Test Symp. (ATS), pp. 76-81, Nov. 2017.

[9] H. Shaheen, G. Boschi, G. Harutyunyan, and Y. Zorian, "Advanced ECC Solution for Automotive SoCs", Proc. of IEEE Int'l Symp. on On-Line Testing and Robust System Design (IOLTS), pp. 71-73, 2017.

[10] F. Su and P. Goteti, "Improving Analog Functional Safety Using Data-Driven Anomaly Detection", Proc. of IEEE Int'l Test Conf., Paper 13.3, pp. 1-10. 2018.

[11] S. Sunter and A. Roy, "On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz," IEEE Design & Test of Computers, July-Aug., pp. 314-321, 2004.

[12] S. Sunter and A. Roy, "Purely Digital BIST for any PLL or DLL", Proc. of IEEE European Test Symp., pp. 1-6, 2007.

[13] R. Kinger, S. Narasimhawsamy, and S. Sunter, "Experiences with Parametric BIST for Production Testing PLLs with Picosecond Precision", Proc. of IEEE Int'l Test Conf., pp. 1-9, 2010.

[14] J.-J. Huang and J.-L. Huang, "An Infrastructure IP for On-Chip Clock Jitter Measurement", IEEE Int'l Conf. on Computer Design, pp. 1-6, 2004.

[15] P.-Y. Chou and J.-S. Wang, "An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit with Automatic Resolution Calibration for high PVT-Variation Resilience", IEEE Trans. on Circuits and Systems-I: Regular Papers, Vol. 66, No. 7, pp. 2508-2518, July 2019.

[16] J. Yu and F. F. Dai, "On-Chip Jitter Measurement Using Vernier Ring Time-to-Digital Converter," Proc. of
 Asian Test Symp., pp. 167-170, 2010.

[17] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, "Time-to-Digital Converter with Vernier Delay Mismatch Compensation for High Resolution On-Die Clock Jitter Measurement," Digest of the Int'l Symp. on VLSI Circuits, pp. 166-167, June 2008.

[18] W. Chu and S.-Y. Huang, "Online Safety Checking for Delay Locked Loops via Embedded Phase Error Monitor", IEEE Trans. on Emerging Topics in Computing, (Early Access Article), 2019.

[19] P. Chen, S.-I. Liu, and J.-S. Wu, "A CMOS Pulse-Shrinking Delay Element for Time Interval Measurement," IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, Sep. 2000.
[20] Y. Liu, U. Vollenbruch, Y. Chen, C. Wicpalek, L. Maurer, Z. Boos, and R. Weigel, "Multi-stage Pulse Shrinking Time-to-Digital Converter for Time Interval Measurements," in Proc. of European Microwave Integrated Circuit Conf. (EuMIC), pp. 267-270, 2007

[21]C.-C. Chen, S.-H. Lin, and C.-S. Hwang, "An Area-Efficient CMOS Time-to-Digital Converter Based on Pulse-Shrinking Scheme," IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 61, no. 3, Mar. 2014.

[22]C.-H. Wu, S.-Y. Huang, M. Chern, Y.-F. Chou, and D.-M. Kwai, "A Resilient Cell-Based Architecture for Time-to-Digital Converter", Proc. of IEEE Int'l Symp. on VLSI, pp. 7-12, Bochum, Germany, pp. 7-12, July 2017.

[23]C.-H. Wu, S.-Y. Huang, Y.-F. Chou, and D.-M. Kwai, "Time-to-Digital Converter Compiler for On-Chip Instrumentation", IEEE Design and Test (D&T), Early Access Article, 2020.

[24]W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE Int'l Test Conf., (ITC), pp. 1-8, 2020.[25]C.-W. Tzeng, S.-Y. Huang, P.-Y. Chao, and R.-T. Ding, "Parameterized All-Digital PLL Architecture and Its Compiler to Support Easy Process Migration," IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, March 2014.

[26]C.-E. Lee and S.-Y. Huang, "A Cell-Based Fractional-N Phase-Locked Loop Compiler," Proc. of IEEE Int'l Conf. on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD), pp. 273-276, (July 2018).