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■ Verify Manufacturing of Circuit:
■ System Reliability ↑
■ System Cost ↓
■ Testing Time ↓
■ Cost of Repair after Manufacturing ↓
■ Circuit quality ↑

Introduction

Final Chip

Bad Good

Customer Don’t need
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■ Why we need Rigorous Built-in Test Flow?

■ Why we need Rigorous Built-in Test Flow?

Rigorous Built-in PLL Test 

PLLPLL

Test pass/ fail

Phase-Locked Loop
(PLL)

Output Clock

Hard Fault? Ex: Can’t Oscillate.

Weak Device?
At extreme 

operating conditions.



6

A functional test setup for a PLL device

PLL Under Test

Rigorous
PLL Test Controller

Pass-or-Fail

Input
A subtle defect

clk_ref

Output

clk_PLL

Control Signals

PM

“PM” denotes for Performance Metrics,
Including frequency error and peak-to-peak jitters, etc.
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■ Why we need Jitter Measurement with VDD Sweeping?
■ Temperature may be different 
■  To cover the possible operating range
■ Thermal chamber Temperature-to-VDD-mapping Scheme

VDD Sweeping

Phase-Locked Loop
(PLL)

DCO

Phase-Locked Loop
(PLL)

VCO

Digitally-Controlled Oscillator Voltage-Controlled Oscillator 

O
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■ Under-sampling Method [11][12][13][14]

■ Self-referenced TDC Method [15]

■ Sampling-based TDC Method [16][17]

Jitter Measurement

[11]S. Sunter and A. Roy, “On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz,” IEEE Design & Test of Computers, July-Aug., 

pp. 314-321, 2004.

[12]S. Sunter and A. Roy, “Purely Digital BIST for any PLL or DLL”, Proc. of IEEE European Test Symp., pp. 1-6, 2007.

[13]R. Kinger, S. Narasimhawsamy, and S. Sunter, “Experiences with Parametric BIST for Production Testing PLLs with Picosecond 

Precision”, Proc. of IEEE Int’l Test Conf., pp. 1-9, 2010.

[14]J.-J. Huang and J.-L. Huang, “An Infrastructure IP for On-Chip Clock Jitter Measurement”, IEEE Int’l Conf. on Computer Design, pp. 1-6, 

2004.

[15]P.-Y. Chou and J.-S. Wang, “An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit with Automatic Resolution Calibration for 

high PVT-Variation Resilience”, IEEE Trans. on Circuits and Systems-I: Regular Papers, Vol. 66, No. 7, pp. 2508-2518, July 2019.

[16]J. Yu and F. F. Dai, "On-Chip Jitter Measurement Using Vernier Ring Time-to-Digital Converter," Proc. of Asian Test Symp., pp. 167-170, 

2010.

[17]T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-to-Digital Converter with Vernier Delay Mismatch Compensation 

for High Resolution On-Die Clock Jitter Measurement,” Digest of the Int’l Symp. on VLSI Circuits, pp. 166-167, June 2008.
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■ Under-sampling Method [11][12]

■ Indirect Measurement

■ Analyze the cumulative distribution of the jitter  RMS jitter

■ Highest Resolution

■ Extra high-precision crystal oscillator[13] Cost ↑

Jitter Measurement

[11]S. Sunter and A. Roy, “On-Chip Digital Jitter Measurement, from Megahertz to Gigahertz,” IEEE Design & Test of Computers, July-Aug., 

pp. 314-321, 2004.

[12]S. Sunter and A. Roy, “Purely Digital BIST for any PLL or DLL”, Proc. of IEEE European Test Symp., pp. 1-6, 2007.

[13]R. Kinger, S. Narasimhawsamy, and S. Sunter, “Experiences with Parametric BIST for Production Testing PLLs with Picosecond 

Precision”, Proc. of IEEE Int’l Test Conf., pp. 1-9, 2010.
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■ Under-sampling Method [14]

■ Analyze the cumulative distribution of the jitter  RMS jitter

■ Two-tap Delay Line  Not a coherent under-sampling clock

■ Finite sample size

Jitter Measurement

[14]J.-J. Huang and J.-L. Huang, “An Infrastructure IP for On-Chip Clock Jitter Measurement”, IEEE Int’l Conf. on Computer Design, pp. 1-6, 

2004.
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■ Self-referenced TDC Method [15]

■ Indirect Measurement

■ Measure peak-to-peak jitter

■ PLL’s output clock signal drive a Delay-Locked Loop

■ Period jitter  phase error

■ Uncertainty of DLL measurement error ↑  

[15]P.-Y. Chou and J.-S. Wang, “An All-Digital On-Chip Peak-to-Peak Jitter Measurement Circuit with Automatic Resolution Calibration for 

high PVT-Variation Resilience”, IEEE Trans. on Circuits and Systems-I: Regular Papers, Vol. 66, No. 7, pp. 2508-2518, July 2019.

Jitter Measurement
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■ Sampling-based TDC Method [16][17]

■ Direct Measurement

■ Analyze the cumulative distribution of the jitter  RMS jitter 

Measure over 100k TDC code. Time-Consuming 

[16]J. Yu and F. F. Dai, "On-Chip Jitter Measurement Using Vernier Ring Time-to-Digital Converter," Proc. of Asian Test Symp., pp. 167-170, 

2010.

[17]T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-to-Digital Converter with Vernier Delay Mismatch Compensation 

for High Resolution On-Die Clock Jitter Measurement,” Digest of the Int’l Symp. on VLSI Circuits, pp. 166-167, June 2008.

Jitter Measurement
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■ We use min-Max TDC [24] jitter measurement method.

■ Direct Measurement

■ Measure peak-to-peak jitter

■ Continuously monitor the peak-to-peak jitter  catch short-time glitches

■ On-line jitter validation

Jitter Measurement

• [24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE 

Int'l Test Conf., (ITC), pp. 1-8, 2020.
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Architecture of PLL Monitor

Encoder
(Thermometer to Binary)

Period-to-Pulse

Converter (P2P)
Min-MAX TDC

Controller

PTin

Catch[0:64]

PLL
Clk_out

Circuit

Under

Monitoring
start

min-code[5:0], Max-code[5:0],

PPJA code[5:0] = Max-code[5:0] – min-code[5:0]

PLL monitor

• [24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE 

Int'l Test Conf., (ITC), pp. 1-8, 2020.

 Definition: 
1) The min-code and Max-code are the outputs of our PLL monitor and represents the min-

period and Max-period, respectively.
2) PPJA (Peak-to-Peak Jitter Amount) Code refer to the difference between min-code and 

Max-code. It can represent the JJPA.
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■ PPJA is the “robustness indicator” in this work for weak device detection.

■ Reasons why PPJA is a better indicator than the RMS jitter :

Robustness Indicator – PPJA

PPJA RMS jitter 

Sensitive

Catch short-time transient 
performance hazard 

Performance

20ps vs 2ps

worst-case situation or 

weakness 
only the average-case 
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■ Objectives: More rapid and low cost.

■ Through our jitter measurement, we can transfer the PPJA code into the 
absolute Peak-to-Peak Jitter Amount value in pico-second unit.

■ Online validation.

■ Classify weak device.

■ Built-in PLL test  Prevent dangerous defects before manufacturing.

Objectives of This Work

• [24] W.-H. Chen, C.-C. Hsu, and S.-Y. Huang, "Rapid PLL Monitoring By a Novel min-MAX Time-to-Digital Converter", Proc. of IEEE Int'l 

Test Conf., (ITC), pp. 1-8, 2020.
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■ Introduction
■ Proposed Rigorous Test Flow for PLL using Jitter Measurement

■ Proposed Jitter Measurement
■ Proposed Temperature-to-VDD-mapping Scheme
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■ PLL used as a frequency multiplication circuit to generate high-speed 
on-chip clock generation. (e.g., 1 GHz clock)

Basic Fractional-N PLL

Frequency fout = N.f ·fref

(e.g., When N.f=100, fout = N.f ·fref = 100*10MHz = 1GHz)

Lock

N.f

Frequency fref

(e.g., 10MHz) Phase-Locked Loop
(PLL) Output Clock

Clk_out

Reference Clock
Clk_ref

DCO
Digitally

Controlled
OscillatorFrequency 

Multiplicative 
Factor (MF)

• C.-E. Lee and S.-Y. Huang, "A Cell-Based Fractional-N Phase-Locked Loop Compiler," Proc. of IEEE Int'l Conf. on Synthesis, 

Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD), pp. 273-276, (July 2018).

Input frequency 

Output frequency 

Locking time

peak-to-peak jitter = P2 – P3

P1 P2 P3
min  period = P3
Max period = P2
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 An adder and a simple shifter. 

Implementation

(min-MAX TDC at sampling mode)
Generate k clock period samples. 

Set k=2m

PeriodSum += PPJA  

PeriodSum >> m
(division-by-k implicitly)

Get avg-p-code
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Test Flow

Calibration Scheme

Jitter Measurement VDD Sweeping

Test Flow
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Test Flow

Stage 1:
Training Stage

Get 3 Pivot Points

Construct the 
transfer function

Stage 2:
Interpretation Stage

Produce min_code, 
Max_code, and 

PPJA code.
(In Monitoring Session)

Get Abs_min, 
Abs_Max, and the 

absolute PPJA.

Calibration Scheme
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Training Stage

Stage 1:
Training Stage

Get 3 Pivot Points

Construct the 
transfer function
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Interpretation Stage

Stage 2:
Interpretation Stage

Produce min_code, 
Max_code, and 

PPJA code.
(In Monitoring Session)

Get Abs_min, 
Abs_Max, and the 

absolute PPJA.
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Jitter Monitoring and Measurement Flow

Start
Perform Jitter Monitoring

(min-MAX TDC in continuous mode)

YES

Min Code
Max Code

Anomaly ? Fail Case

Perform Dithering-Based Training
(min-MAX TDC in sampling mode)

Establish the Transfer Function
(For our min-MAX TDC)

Perform Interpretation
(using the established Transfer Function)

Dithering-Based
Calibration

3 pivot
points

Abs min
Abs Max

Absolute PPJA

NO

(for online design validation)PPJA: Peak-to-Peak Jitter Amount
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■

Generation of Pivot Points

Start

Tcenter
Codecenter

Center Pivot Point
Compute the average of

k clock period codes, as Codecenter
(with min-MAX TDC in sampling mode )

Start the PLL until it is locked

Perform “Dithering” to the Right by Rsize
Wait until the PLL is Re-locked

Compute the average of
k clock period codes, as Coderight

(with min-MAX TDC in sampling mode )

Perform “Dithering” to the Left by Lsize
Wait until the PLL is Re-locked

Compute the average of
k clock period codes, as Codeleft

(with min-MAX TDC in sampling mode )
Tleft

Codecenter

Left Pivot Point

Tright
Coderight

Right Pivot Point

Left
Dithering

Right
Dithering

Pivot =(x, y)

Pivot𝒄𝒆𝒏𝒕𝒆𝒓 =  (Codecenter, Tcenter)

Pivot𝒍𝒆𝒇𝒕 =  (Code𝒍𝒆𝒇𝒕,  T𝒍𝒆𝒇𝒕 )

Pivot𝒓𝒊𝒈𝒉𝒕 =  (Coderight, Tright )

Tright = Tcenter + R

Tleft = Tcenter - L 
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30, 1000
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Digital code

Avg. Digital code to Period

Example

 Tcenter = 1000 ps  Codecenter = 30

 Pivot𝒄𝒆𝒏𝒕𝒆𝒓 = (30, 1000)

 Dithering size L = R = 5ps

  Tright = Tcenter + R = 1005ps

  Tleft = Tcenter - L = 995ps

 Coderight = 35; Codeleft = 25

 The linear transfer function: 

y = x + 970

 [min-code, Max-code] = [28, 33]

↓ y = x + 970

 [min-period, Max period] = [998ps, 1003ps]

 PPJA = 1003-998 = 5ps
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Classify a PLL Device

PLL Devices

Fail Weak Pass

1st level test 2nd level test

Do not oscillate.
Low frequency accuracy.
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Rigorous Test Flow

Set an Initial VDD Levelstart

Apply Reference Clock Signal

Start PLL until it is locked

Start a Monitoring Session

(min-MAX TDC in continuous mode)

Derive “Absolute PPJA”

(min-MAX TDC in sampling mode)

Sweeping
VDD Level

Min Code
Max Code

PPJA Code

Test Result Interpretation

Pre-determined

Absolute
PPJA

Final Test Result
(weak or passing)

over a wider range

of conditions

Jitter
Profile

Pre-characterized
fail

threshold
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■ None of the traditional tests strictly consider the effect of temperature.

■ Our DCO is a function of two-level control codes  <b, g>.

Temperature-to-VDD-mapping Scheme

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
ri

o
d

(p
s
)

𝜷 value

g = Max

g = min
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■ Different operating points in the DCO profile at different temperatures.

Different OP at Different Temperatures

125°C

<b, g>=<4, 38>

25°C

<b, g>=<3, 32>Target
Oscillation

period

Oscillation
Period of DCO

Oscillation
Period of DCO

OP(VDD, Temperature) = < b, g >
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Different OP at Different Temperatures

OP(VDD, Temperature) = < b, g >

■ It is much easier to change the VDD level than to change the 
temperature.

■ Define a term called “Equivalent VDD level”.

OP(1V, -40°C) = <2, 49>
OP(1V,  25°C) = <3, 32>
OP(1V, 125°C) = <4, 38>
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■ Equivalent VDD Level for a temperature:

OP(V0, p) = OP(EVp, pamb)

p = [-40°C, 125°C]

■ Notation for Extreme Temperatures:

■ p-left is -40°C and p-right is 125°C.

Definition of Temperature-to-VDD-mapping Scheme
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■ To derive the Equivalent VDD Level for p-left and p-right.
■ EVp-left and EVp-right. 

■ We use a successive approximation method:

Equivalent VDD level

(Post-layout Simulation)
OP(V0, p-left) = < bleft, gleft >

(Vx gradually decreasing)
When OP(Vx, pambient) = < bleft, gleft >

Vx = EVp-left

Repeat
Find EVp-right
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■ Transforming the operating conditions from [-40°C, 125°C] at 1V to 25°C 
at [EV-40°C, EV125°C] V, while exercising the same “operating point 
range”(OP Range) in the DCO profile.

Transforming the Operating Conditions

OP Range at 1V
[-40°C, 125°C]

OP Range at 25°C
[EV-40°C, EV125°C]

Transform
the Operating Conditions
While Keeping OP Range

P
e
ri

o
d

 (
p

s
)

P
e
ri

o
d

 (
p

s
)
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■ The code resolution of the TDC is time-varying and affected by 
VDD level and temperature among other factors.

■ Decompose the entire test session into sub-session. 
■  Code resolution is constant.

TDC Resolution Issue
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■ Layout in a 90nm CMOS Process

■ Power consumption = 4.339 
mW.

■ The total area is 0.054 mm2.
■ The area of proposed Monitor is 

0.021 mm2.
■ The area of ADPLL is 0.033 mm2.

Layout

229.6

(um)
All-Digital PLL (ADPLL)

P2P Min Max TDC

EncoderController

234.92 (um)
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Result of 3 pivot points for 1GHz PLL 
The 3 pivot points for 1GHz PLL

y = 3.6562x + 874.75

970

980

990

1000

1010

1020

1030

0 10 20 30 40 50

Cl
oc

k 
Pe

ri
od

(p
s)

Period Code (by our TDC)

Right Pivot
(41.17, 1025ps)

Center Pivot
(34.1, 1000ps)

(Left Pivot)
(27.5, 975ps)

 Example: 

1) Pivotcenter=  (34.1, 1000ps) 
Pivotright=  (41.17, 1025ps) 
Pivotleft=  (27.5, 975ps) 

2) Linear Transfer Function: 
y=3.6562x+874.75

3) Resolution(LSB) = 3.6562ps

4) [min-code, Max-code]  = [31, 38]

5) [min-period, Max-period]            
= [991.75, 1013.69]

6) PPJA = 21.94 ps

↓ y=3.6562x+874.75

Result of 3 pivot points for 1GHz PLL 

Pivot

Points

Dithering

Size

Multiplicative

Factor (N.f)

Ideal

Clock

Period

Actual Average 

of 128 Clock 

Period Samples

Average of the 

128 Period Codes 

Reported

Center 0 41.67 1000ps 999.97ps 34.1

Left -25ps 42.73 975ps 975.02ps 27.5

Right +25ps 40.65 1025ps 1024.95ps 41.17
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Result of 3 pivot points for 1GHz PLL 

Clock Period (ps)

#
 o

f 
o

c
c

u
rr

e
n

c
e

The clock period profile

Dithering-
Based

Direct Waveform 
Analysis 

Error (ps)

min-period (ps) 991.75 990.02 1.73

Max period (ps) 1013.69 1010.73 2.96

Peak-to-Peak 
Jitter (ps)

21.94 20.71 1.23

Result of 3 pivot points for 1GHz PLL 
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 Jitter measurement results for 2 ADPLL designs. 

 Due to the simulation time, we only set clock period samples = 128.

 Calibration Time = 110𝝁𝒔 when clock period samples = 1024.

Comparison of different jitter measurement methods Result of Jitter Measurement

Target 

Frequency 

(MHz)

Target Clock 

Period (ps)

Avg. Clock 

Period (ps)

Peak-to-Peak Jitter (ps)
LSB Resolution 

of our TDC (ps)

Error* 

(ps)
Direct Waveform 

Analysis
Ours

1000 1000 1000.06 20.71 21.94 3.6562 1.23

1152 868 868.14 16.5 17.72 3.5433 1.22
* Error < 1LSB
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Test 

Session

VDD 

Level

(V)

Avg. PLL’s 

Output Clock 

Period (ps)

Value 

of PPJA 

Code

TDC’s Code 

Resolution 

(ps)

Peak-to-Peak Jitter (PPJA) (ps)

Error (ps)Direct Waveform 

Analysis (Reference)

Our 

Method

1 0.95 1000.032 7 3.53 22.29 24.71 2.42

2 0.96 1000.432 12 3.53 42.00 42.36 0.36

3 0.97 999.506 10 3.54 34.59 35.4 0.81

4 0.98 1000.018 9 3.62 30.95 32.58 1.63

5 0.99 1000.745 9 3.64 29.54 32.76 3.22

6 1 1000.117 9 3.66 33.57 32.94 0.63

7 1.01 1000.497 8 3.73 28.12 29.84 1.72

8 1.02 1000.123 10 3.74 37.45 37.4 0.05

9 1.03 1000.124 8 3.75 32.70 30 2.7

10 1.04 999.994 5 3.75 20.40 18.75 1.65

VDD level sweeping from 0.95V to 1.04V

max

min

 OP(1V, -40°C) = <2, 49> = OP(1.04V, 25°C)
 OP(1V, 125°C) = <4, 38> = OP(0.95V, 25°C)

125°C

25°C

-40°C

Mapping

Temp.
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Test 

Session

VDD 

Level

(V)

Avg. PLL’s 

Output Clock 

Period (ps)

Value of 

PPJA Code

TDC’s Code 

Resolution (ps)

Peak-to-Peak Jitter (PPJA) (ps)
Error 

(ps)
Direct Waveform 
Analysis (Reference)

Our 

Method

1 0.95 1000.032 7 3.53 22.29 24.71 2.42

2 0.96 1000.432 12 3.53 42.00 42.36 0.36

6 1 1000.117 9 3.66 33.57 32.94 0.63

10 1.04 999.994 5 3.75 20.40 18.75 1.65

VDD level sweeping from 0.95V to 1.04V

max

min

…

Reported PPJA range = [18.75ps, 42.36 ps],

Wide-Range PPJA gap = 42.36 – 18.75 = 23.61ps

Nominal Reported PPJA at 1V = 32.94ps

Rigorous Test Gain = 42.36ps – 32.94ps = 9.42ps or (28.6% 

worse)
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■ Proposed Rigorous Test Flow for PLL using Jitter Measurement
■ Experimental Results
■ Conclusion

Outline
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■ Faster clock period monitoring and jitter measurement scheme for a 
PLL with min-MAX TDC and Dithering-Based Calibration. 10ms 
110𝜇𝑠.

■ Support online jitter validation. 
■ (Map the digital code [min-code, Max-code] into the absolute amounts 

[min-period, Max-period] in pico-second.)

■ Classify PLL device by temperature-to-VDD-mapping scheme to support 
the transformation of test conditions to make the test easier. 

■  not using the support of a thermal chamber. 

Conclusion
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Thanks for your attention!
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