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Motivation 1: Early Warning
Introduction
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Motivation 2: Demands on High Correlation

 Basic Learnings:
Supervised:

classification  clustering  data annotation (labeling)  training
with high correlation  high accuracy and high safety 

Reinforcement: Implied reward
Unsupervised: complicate, time-consuming, danger

 Correlation
Early Stage:

 Inherent (Innate) Correlation:
 Process Technology  Lot  Chip  Cell Type  Thermal & Backgnd.

Suitable Strategies:
 Stratified Sampling
 Data Annotated by the (accelerated) aged (old men ~ experienced men)

Steady Stage:
Acquired Correlation:

 Required to be trained by labels
Divergence:

Different operations  ton duration & switching activity (sa)  hot spots
Trained detectors

age time
failure ratecorrelation

Introduction
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Concept of Aging Causality

history

NBTI
HCI

Fatigue Brittle

aging factor activator  (catalyst)
thermal

frequency

detectable
aging symptoms

power voltage
temperature

voltage

 Observation:
 Diagnosis (classifier) is usually 

more challengeable than detection
 Some parameters can be factor, 

catalyst and/or symptom
 power/energy/thermal/temperature

 Some symptoms are a syndrome 
due to more than two factors.
 (NBTI, HCI)  Vth slack loss
 Can be unified for the same purpose
 Sensitive or different detectors 

required for classifying them.

Introduction
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Failure Mechanisms of ICs
 Failure Mechanisms Related to the Wafer Process

 Negative Bias Temperature Instability (NBTI)  pMOS, ton, T
 Hot Carrier Injection (HCI)  nMOS, VDD, Switching, T, ta
 Time Dependent Dielectric Breakdown (TDDB)  tox, ta
 Electro-migration  Process, T, ta
 Stress Migration
 Soft Error
 Reliability of Non-Volatile Memory

 Failure related to Packaging, Assembly & Use
 Wire Bonding Reliability (Au-Al Joint Reliability) Ag Ion Migration
 Al Sliding
 Filler Whiskers
 Moisture
 Cracks
 Electrostatic Breakdown and Electrical Overstress Breakdown
 Latchup
 Power MOS FET Damage

RENESAS Ltd. Semiconductor Reliability Handbook, 2017.

Introduction
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Major Aging Factors
 Negative-bias temperature instability (NBTI)

 Typical 𝜶-Power Model
 ΔV୲୦ ൌ 𝐴 · 𝑡௢௡ఈ · 𝑉௦
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 “power” coefficients: 0.5 ൏ 𝛼,𝛽, 𝛾 ൏ 1.0 roughly
 Ea: activation energy. 𝜂: recovery coefficient

 Hot Carrier Injection (HCI)
 Typical 𝜶-power Model
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 Fatigue Resistance
 Basic 𝜶-power Model of thermal fatigue

 Δ𝜌 ൌ 𝜌௢
்

೚்

ఈ
𝑡ఉ

HHHH

Si Si Si Si
p+ p+

long stress on

e
e n+n+

Introduction



8

 Hard to distinguish due to similar response
 They has ever been unified for PM early.
 whole life aging tracking  Recurrent NN ?

NBTI vs. HCI

Aging Factors Catalysts
(Activators)

Effect
(Response)

Comparison NBTI HCI NBTI HCI NBTI HCI
High Voltage V V

High Temperature V V
MOS Type Majored pMOS nMOS

Frequency V V
Stress State ON Switching
Δ𝑉௧௛/𝑉௧௛଴ V V
𝐼஽஽ொ reduced reduced
delay V V

Y. Wang, et al. "A unified aging model of NBTI and HCI degradation towards lifetime
reliability management for nanoscale MOSFET circuits," NanoArch2011.

Introduction
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Previous Work on Online Early Warning for ICs
 Duplicate circuit stressed as aging tracker

 With very high correlation
 Compared with TMR:

 Stressed one can be healthy, while the minority may be right.
 High cost

US7,271,608(2007)

Bert M. Vermeire and Harold G. Parks. Prognostic Cell for Predicting Failure of Integrated Circuits.
US Patent 7,271,608 B1, Sep. 18, 2007.

Previous Work
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Previous Work on Online Early Warning for ICs
 Mitra [VTS07] proposed a concept on the worst case guardbanding.

 Focused on NBTI-related aging
 Taking a general circuit in 1GHz frequency is usually with 3~7 years of life to estimate 

the slack and guardband.
 In an about (1 years/3 days)-aging acceleration technique, the guardband adjustment is 

estimated.

M. Agarwal, B. C. Paul, M. Zhang and S. Mitra, "Circuit Failure Prediction and Its Application to Transistor Aging,“
25th IEEE VLSI Test Symposium (VTS'07), Berkeley, CA, 2007, pp. 277-286. 

real time (ns)
slack slack guardband

(days)
0 15

0 1ns

age time(years)0 5
guardband interval

stress

Previous Work
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Previous Work on Online Early Warning for ICs
 You & Gu [ASPDAC17] shortened 15d to 12s-ton by +2.2V Stress for 

NBTI.
 Proposed a charge pumper without stress infection on normal circuits by ground level 

shifting.
 A set of ORs are stressed in each rebooting time for aging tracking and provide early 

warning. 

Y. You and J. Gu, "Exploiting accelerated aging effect for on-line configurability and hardware tracking," 
22nd Asia & South Pacific Design Automation Conf., Chiba, 2017, pp. 348-353.

Previous Work
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Previous Work on Online Early Warning for ICs
 Major Previous Work related to On-Line Aging Monitoring Methods

 No work applies NN obviously except TCAD2017Sadi and PM work introduced later.
 Sadi’s work is actually either an unsupervised classifier or implied by the scalar 

parameter – slack time.
 A famous unsupervised learning example tells about how a 1-year kid how to distinguish 

a DXX and a CXX. Its response is learned by innate values and finally it cannot tell the 
names due to no labels.

 TCAD2017Sadi’s work can only classified into 2~25 “feature IDs” with considerable 
mismatches.

References Factor Catalyst Symptoms On/Off-Line Object Target Parameter Monitoring Meas/Sim Learning
NBTI HCI TDDB Fatigue None Temp Delay Vdrop f

TCAD2014Lai slack online NA
TCAD2015SYHuang slack NA
VTS2016Anghel V online NA
JSSC2008 V NA
TVLSI2012Wang slack NA
TDAES2015Firouzi slack NA
ASPDAC2017You V V V slack NA prech Tracking Monte Carlo NA
ITC2013Firouzi slack online NA
TCAD2017Sengupta slack prech bound-derive NA
TVLSI2017Tenentes V V online NA
TCAD2017Sadi slack online TSV Binning speed ML

Previous Work
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Previous WorkPrevious Work on NNs for PM

S. Pagani, P. D. S. Manoj, A. Jantsch and J. Henkel, "Machine Learning for Power, Energy, and Thermal Management on
Multicore Processors: A Survey," Trans. CAD of IC & Sys. 39(1): 101-116, Jan. 2020.

Year Work
Optimize (G) / Constraint (C) Optimization Knobs Architecture Machine Learning Technique

Perf Power Energy Temp Task
Alloc DPM DVFS Single

Core
Homogeneous

Multicore
Heterogeneous

Multicore
Supervised

Learning
Unsupervised

Learning
Reinforcement

Learning
2016 [48] C G ✓ ✓ ✓ TD(A)-learning
2015 [15] G C ✓ ✓ Q-learning
2015 [14] G ✓ ✓ Q-learning
2015 [16] G C G/C ✓ V ✓ ✓ Q-Learning
2015 [36] C G ✓ ✓ Clustering
2015 [24] C G ✓ ✓ TD(A)-learning

2015 [18] C G/C V ✓
Rigid linear 
regression

2015 [37] C G/C ✓ ✓ Q-learning
2014 [38] C G V V ✓ Q-Leaming
2014 [9] C G C V ✓ ✓ Neural Network Q-learning
2014 [25] C G ✓ ✓ TD(A)-learning
2013 [26] C G C V V ✓ Q-learning
2013 [6] C G ✓ ✓ Bayes classifier TD(1)-learning
2013
2011

[39]
[40] C G C V ✓

Least squares
regression

2012 [7] G C ✓ ✓ Q-learning

2012 [41] G .( V Genetic
algorithm

k-means
clustering

2012 [27] G/C G/C G/C V ✓ Q-leaming
2011 [28] G/C G/C ✓ ✓ Bayes classifier TD(A)-learning

2011 [29] G C V V k-means
clustering Q-learning

2011 [30] C G ✓ ✓ Least squares regression
2011 [42] G/C G/C V V ✓ ad hoc

2010 [43] G C V V ✓
Least squares

regression
k-means
clustering

2010 [8] C G ✓ ✓ Bayes classifier
2010 [44] C G/C V ✓ Least squares regression

2010 [45] C/G V V V Observe-decide 
act

2010 [31] C G V ✓
Least mean square

linear predictor
2009 [32] C G V ✓ Q-learning
2009 [33] G G ✓ V ✓ ad hoc
2008 [46] G/C V ✓ LWPR
2008 [47] G G/C ✓ ✓ V ✓ ad hoc
2005 [21] C G V ✓ Least squares regression

2002 [34] G/C G V V Markov
Decision

1999 [35] G .( V Adaptive
learning tree
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Previous Work on NN Data Annotation
 10 best data annotation companies in web lionbridge.ai

 Data annotation is not only an issue but a significant and commercial 
task.

 Usually processed automatically off-line also by AI methods
 Finally decided by at least 2 experts in the field.
 No literature works on data annotation related to early warning of IC aging.

 Relation Graph of Correlations:

 Supervised:
 Unsupervised but with single label (scalar thermal or slack with implied direction):

p(single label) = 100%

fop

Vop

Workload

Temp.

Feature 1

Feature 2

Feature 3

Feature 4

Label 1

Label 2

Label 3

Label 4

accuracy a11correlation 𝜌ଵଵ

𝑝 𝜌 𝐿𝑎𝑏𝑒𝑙 · 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐿𝑎𝑏𝑒𝑙 ൌ 𝑝ሺ𝜌ሻ

Previous Work
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Subproject-4: Big-Data Driven Online Testing, Reconfiguration, 
and Reliability Enhancement for AI Hardware Accelerators
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Proposed Online Aging Monitor
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Stratified Sampling
 Stratified Sampling

 Concept: Examples with respective to both gate types and locations:

 High correlation to the average effect of the whole circuit under test
 Personalities of critical paths, TSVs, hot-spot are lost  should be kept

 High-Risk Sampling
 High risk in normal operations that cannot be replaced and stressed, but 

with high correlation to specific SAFER Indicators
 Hard to reflect the portion of the whole circuits under test
 Examples:

5

location

gate count

1

2

3

4

6

location

gate count

200k

400k

600k

800k

2M

1M
Stratified Sampling

Histogram
of gate types and locations

Histogram
in an oscillating ring

Proposed Online Aging Monitor

Factors High-Risk Patients
NBTI Idle SRAM, FFs, Latches
HCI Delay-lines, Flip-flops

Fatigue Hot spots, TSVs, Contacts
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SAFER Array
 Single Aging-Factor Enhanced Rings

Victim Victim Victim
S

Counter
EN

S

stress time

4s

16s

64s

counting period

S S

S

S

VDD

VDD

S

S

Proposed Online Aging Monitor
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NBTI Enhanced Cell for Aging Acceleration

 Mapping NBTI effect to circuit delay
VDD

65°C ±Noise rnVDD  

A

B

C

A B C

NBTI stress
H+

H+

H+

VDD

Proposed Online Aging Monitor
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Basic Concept of SAFERs

NBTIHCI

Fatigue Resistance

Normal operations
Stratified Sampling Detectors

Proposed Online Aging Monitor
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Proposed Online Aging Monitor
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General Simulation Acceleration
 Fresh Simulation (eg. Conventional HSPICE)

 Cannot change $agetime, $Temperature, thermal H in a session.
 Δ𝑡 can be accelerated

to Δ𝑡′ under precision
control.

 Aging Simulation in Real Time
 Dynamic Range (Precision) Issue.
 Extremely Terrible Time Complexity, eg. 109Hzx107gatesx106sec !

 Aging Simulation in Aging Time
1. Aging acceleration: with an AgingTime

Scaling Factor (ATSF)≫ 500
2. Realtime-Sampling: Aging time space

is split from real time with a large unit ua (s or h).

 Statistics-Base Simulations
1. Probabilistic Simulation: without memory or history
2. Stochastic Simulation: random process from distributions in previous 

state to distributions in next state.

real
time tΔ𝑡௢ Δ𝑡௢ᇱ

Introduction to Aging Simulations

real
time tΔ𝑡௢ Δ𝑡௢ᇱ

൅Δ𝑡௔ ൅Δ𝑡௔ ൅Δ𝑡௔ ൅Δ𝑡௔ ൅Δ𝑡௔ ൅Δ𝑡௔ ൅Δ𝑡௔൅Δ𝑡௔
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Introduction to Verilog-A
 Quick tutorial for HSPICE

 Vth sim
 IR drop
 IV thermal
 Pattern-indep.

stochastic sim can
be done in hi-level
languages,
eg. python

 So far it’s impossible
to sim pat-dep. M-gate
G-Hz circuits with any
effect.

 Symptom profiles are
usually assumed to be
similar to that of a
small circuit or during
a short run.

`lib 'tsmc45.l' TT
`include "disciplines.vams“

.Model Diode D(BV=6.3)

module DVA(A,C);
electrical A,C;
branch (A,C) AC;
parameter real is=1e-14 from [1e-30:inf);
parameter real n=1 from [0:10];
real vd, id;
analog begin

vd = V(AC);
id = is * (limexp( vd / (n * $vt)) - 1);
I(AC) <+ id; // accumulated
// demo for aging simulation
t = $temperature;
agingtime = $abstime*atsf;
ais = f(agingtime, atsf, …);

end
endmodule

D1 1 2 Diode
X2 1 2 DVA
V1 1 0 PULSE(0 1 0 0 0 1n 2n)
R2 2 0 1K
.TRAN 10p 10n
.END

Introduction to Aging Simulations
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 Time-consuming for typical circuits

Difficulties and Considerations on Verification 

 Two-Level Simulations

SW Extractor ton Extractor

 High-Level Language SW Distr. ton Dist.

 HSPICE,  Specter

BSIM 4.8+Verilog-A

Math Model

Symptom Profile

SAFER1

SAFER2

SAFER3

SAFER1

SAFER2

SAFER3

SSORs

SSORs

Introduction to Aging Simulations
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Stochastic Simulation

 Simulation Flow
 Profile Extraction from Small Circuits in a Short Duration

 Switching Activity (SA)
 Turn-on Duration (ton)

 Symptom Mapping from Realistic Profiles  High Complexity
 𝑉௧௛Delay (Slack loss)
 In Adiabatic Models  Temperature Variance
 SA  Voltage-Drop & Ground Bounce

 Kernel Distribution Estimation (KDE, python/seaborn) from Profiles
 Estimate the distributions
 Adjust statistic parameters (Xഥ, S)k
 Extrapolation from stochastic distribution to probabilistic profiles

Softm
ax

Softm
ax

Early Stage
Machine
Learning
Neuronetta

taa

GIGO ?
output layer labels

Introduction to Aging Simulations
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Profile Extraction from Small Circuits

 Profile Extractor
 Revised from our peak power 

estimator / Verilog parser
 Extractable Parameters

 Peak Power
 Average Power
 IDDQ
 Switching Activity (SA)
 C0/C1 Values
 Turn-on Duration (ton, or top)

 Categories
 Whole CUT
 Specific with Uniqueness

Delay line composed NOT gates
Register Files (Top & Bottom)
 SRAM Cells
 PLL, CG, Many-input gates

Simulation Results
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Kernel Distribution Estimation

 Stochastic KDE Probabilistic Profiles
 Profile Extraction from Small Circuits in a Short Duration

 Switching Activity (SA)
 Turn-on Duration (ton) (Vdd (േ5%) & T (60-80℃) are set to uniform, so far)

 Symptom Mapping from Realistic Profiles  High Complexity
 𝑉௧௛Delay (Slack loss)
 In Adiabatic Models  Temperature Variance
 SA  Voltage-Drop & Ground Bounce

 Kernel Distribution Estimation (KDE, python/seaborn) from Profiles
 Estimate the distributions
 Adjust statistic parameters (Xഥ, S)k
 Extrapolation from stochastic distribution to probabilistic profiles

Simulation Results

X

0.3 exp + 0.7 normal

X

Samples Generations

X

KDE SG
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Experimental Results on Vth Degradation
 HSPICE Simulations

 TSMC18 Model transistors for other circuits
 Verilog-A Model for Victim transistors of the Surrogate Cells with n~0.5
 NBTI:

 HCI:

0.00E+00
2.00E-10
4.00E-10
6.00E-10
8.00E-10
1.00E-09
1.20E-09
1.40E-09
1.60E-09
1.80E-09

0 0.1 0.2 0.3 0.4 0.5 0.6

Period vs. Vth
of a SAFER with 14 HCI-Stressed Inverters

Simulation Results

SA

0 0.2 0.4

pdf(ton)

0 1 2 (s)
𝑉஽஽ & 𝑉஽஽ு

0 1.8 4 (V)
Pdf         cdf

𝑇

0 6080(℃)
P
df
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Simulation on Supervised Learning
 3 symptoms (SW (instead of T), Delay, IR drop) x 3 SAFER Arrays
 Low absolute accuracy because the symptoms and response of SAFERs are 

still the combinations of multiple factors.
 If the Bayesian analyses are applied to calculate the weighted accuracy, the 

weighted accuracy can be pulled up to 84%
 Actually, the safety is better than 100% classifier without any correlation.

Simulation Results
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 Comparison on the aging tracker design

Comparison with Previous Work

Comparison ASPDAC2017Pagani Our SAFER Array

On/Off Line Off-line On-line

Trigger System Reboot Next Guardband Interval

Aging Tracking V V

AI Network None Neural Network

Data Annotation None 1st Stage

Intensity Adapting None 2nd Stage

Early Warning Too Conservative V

Dimensions m times x n samples f factors x n intensities

Comparison of  Results
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Estimation of Cost

Device Sensor Count #gates Estimated
Area (μmଶሻ

Import System Timer 1 0 0

Integrated
Detectors

Path delay 7 392 3,360
IDDQ 0 0 0

Thermal 1 1 (x10) 85
Clk TSV 0 0 0

Data TSV 1 44V+672G 9,531
Isolated SSORs 4 52 445

Isolated
SAFERs

NBTI 12 156 1,337
HCI 4 52 445

Fatigue 4 4V+8G 411

Total 34 48V+1352G 8.5% 
overhead

Comparison of  Results



31

Conclusions & Future Work
 Novelties & Contributions

1. We propose a SAFER array suitable for
Data Annotation to symptoms with high correlation
Classified and annotated symptoms taken to select proper SAFERs for 

early warning
2. Two-Stage co-learning (self-annotation & self-selection) strategy

Reasonable accuracy (≫ 1/#𝐿)
 Future Work

1. Medium-sized circuits aging profile extractors
Making the KDE more trustable by Fmax tests.
 Extracting more realistic profiles

2. Developing more accuracy NN model including Bayesian 
analysis
 Improving the learning accuracy
 Study the overlapped spectrum (Syndrome) to reason the inaccuracy
Multiple monitors for unsupervised intensity learning

3. Guardband reduction by error redundancy
Reliable Neural Network Accelerators
 Taking error correctable capacity for data annotation
Reducing slack guardband and provide longer guardband intervals

Conclusions


