TestDNA: Novel Wafer Defect Signature for Diagnosis and Yield Learning

Katherine Shu-Min Li¹, Ken Chau-Cheung Cheng², Sying-Jyan Wang³, <u>Jian-De Li³</u>, Xu-Hao Jiang¹, Leon Chen²

¹Dept. of Computer Science and Engineering, National Sun Yat-Sen University ²Dept. of Wafer Testing, NXP Semiconductors Taiwan Ltd. ³Dept. of Computer Science and Engineering, National Chung Hsing University

Outline

□ Wafer Test and Diagnosis

Proposed TestDNA Solution

Experimental Results

Conclusion

A Typical Wafer Process Flow

https://www.istgroup.com/tw/business_20180627/, Digitimes, July 13, 2018, https://www.istgroup.com/ 3

Wafer Probe Interface and Test Configurations

Test Configurations:

- 1. # Sites/# Probes
- 2. Test Paths/Tracks with Test Order
- 3. Scan Orientation

Site Probing

Multiple dies tested simultaneously in the same touchdown

- Reducing testing time
- Increase output rate

A 4-site probecard

A wafer map colored and labeled by site

A Typical Wafer Map & Distribution of hardbins

Typical Wafer Map

- Red dots: Failed dies
 - The exact cause of failure is not shown in the wafer map
- Green dots: Dies that pass all test items

Distribution of hardbins

Each color represents a test item

Distribution of hardbins

All Fail Bins

Benefits

Data letting Richweith Comity Marier (a. 4)

For engineer to analyze and improve

AI assists to dig data and consolidate result

Contributions

- Related works: focus on identifying spatial defect patterns in wafer maps
 - Diagnosis resolution problem
 - Small percentage of proper classification

TestDNA

- Visualization
- Statistical model for root-cause analysis and yield learning
- Strong correlation between TestDNA classification and wafer map defect patterns

Problem Definition

- Input: Wafer-under-Test (WUT) with product specifications and test specifications
- Output:
 - Database with TestDNA Sequence
 - TestDNA matrix
 - □x-axis: Hardbin No.
 - □y-axis: #defect dies with colored Sites/Probes
 - TestDNA Feature Space

TestDNA

 Every manufactured wafer has a unique TestDNA
 Wafers suffering from the same fabrication problem tend to have similar TestDNA structure

y-axis: #defect dies with colored Sites/Probes

Defect Types & TestDNA Sequence

Classifying TestDNA

- Every tested wafer has a unique TestDNA
 - Strongly correlated to the major defect types
 - Clues to trace the root causes of defects
- Classifying Algorithm
 - 1. Generate TestDNA database for wafers from the same products
 - 2. For every TestDNA, sort all hardbins according to their respective defect counts in a descending order
 - 3. Normalize defect counts of all hardbins, with the largest hardbin set to 1 (i.e., 100%).
 - 4. Classify all TestDNAs according to the normalized hardbins distribution

Prediction

- □ Can we predict the type of a new TestDNA?
- In this work, we apply multinomial logistic regression to carry out the prediction
 - Site distribution in TestDNA
 - Hardbin distribution in TestDNA
 - Mean, maximum, and standard deviations of TestDNA

Advanced Defect Pattern Recognization

- Each TestDNA type may consist of multiple traditional spatial patterns
 - Type B TestDNA: tennis and local
 - Easily separate these two patterns by applying the mean of TestDNA values

Local

Tennis

Experimental Setup

- We have applied the proposed TestDNA method to analyze 314 wafers from a product
 Training: 188 (60%) TestDNA
- □ Test: 126 (40%) TestDNA

TestDNA Type	# Wafers	Wafer Map Defect Patterns								
А	25	Tennis, Edge-Local, Scratch								
В	28	Tennis, Local								
C	17	Edge-Local, Tennis, Local, Scratch								
 There is no obvious TestDNA distribution Defects in such wafers are largely caused by random errors TestDNAs usually consists of multiple bars with roughly the same heights 										
None	102	None								
		15								

Experimental Results

□ The prediction accuracy is 92.0634%

		Annotation										
		А	В	С	D	E	F	G	Н	I	None	
Prediction	A	<mark>8</mark> (88.9%)	0	0	0	0	0	0	0	0	1 (11.1%)	
	В	0	6 (100%)	0	0	0	0	0	0	0	0	
	С	0	0	7 (87.5%)	0	0	0	0	1 12.5%	0	0	
	D	0	0	1 (2.8%)	34 (94.4%)	0	0	0	0	0	1 (2.8%)	
	E	0	0	0	0	7 (100%)	0	0	0	0	0	
	F	0	0	0	0	0	1 (100%)	0	0	0	0	
	G	0	1 (6.25%)	0	0	0	0	14 (87.5%)	0	0	1 (6.25%)	
	Н	0	0	1 (16.7%)	1 (16.7%)	0	0	0	4 (66.6%)	0	0	
	I	0	0	0	0	0	0	0	0	2 (100%)	0	
	None	0	0	0	0	0	1 (2.9%)	0	1 (2.9%)	0	33 (94.2%)	

Conclusion

TestDNA

- Visualization
- Statistical model for root-cause analysis and yield learning
- Strong correlation between TestDNA classification and wafer map defect patterns
- Prediction accuracy of TestDNA is around averagely 92%
 - 30%, which accuracy approaches 100%
 - 20% with accuracy in 90%-100%
 - □ 30% with accuracy in 80%-90%
 - only 3% with 66.6%

Smart Factory

Thank you very much !

