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• In a heterogeneously integrated Multi-Die IC
• Functional dies are designed and fabricated with different process

• Important building blocks
• Phase-Locked Loop (PLL)

• Delay-Locked Loop (DLL)
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Clock Distribution Problem
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• Objective: All Flip-Flop in each die receive clock at the same time

• Different dies  Different Within-Die Clock Latencies

 Flip-Flops (FFs) receive the clock signal with skews
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DLL-Assisted Clock Synchronization

Clock
Source Point

s0

s1

s2

s3

s4

DLL-1

DLL-2

DLL-3

DLL-4

FF

FF

FF

FF

• The inter-die clock skew is to be minimized by inserted DLLs

• The width of a DLL box denoted as its input-to-output delay



• The basic DLL consists of 3 components:
• (1) Phase Detector (2) Controller (3) Tunable Delay Line (TDL)

• DLL will experience two stages:
• (1) Phase Locking (2) Phase Tracking
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Architecture of a Basic DLL
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• Definition of maximum phase error
• The worst-case phase error amount between clk_ref and clk_out

over a time frame (e.g., 1000 cycles) after the DLL is locked!
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Performance We Care – Max. Phase Error
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• Build a Fault and Error Tolerant (FET) scheme for clock subsystem
• Especially for Delay-Locked Loop (DLL)
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• Hardware redundancy is suitable for clock subsystem

• Active redundancy will need other circuit to monitor our DLL

• We take passive redundancy – Triple Module Redundancy (TMR)
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Objective of This Work
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• Three primitive DLL decide the output through VOTER

• Each DLL performs their phase-locking simultaneously
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Naïve FET-DLL Architecture
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• The VOTER circuit takes time to calculate
• dvoter1 = Delay (f1clk_out)

• dvoter2 = Delay (f2clk_out)

• dvoter3 = Delay (f3clk_out)

• Max(dvoter1, dvoter2, dvoter3) greater than 100ps
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Output Lagging Problem



• Fix the output-lagging problem
• Add dummy voter circuit on its feedback path 
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FET-DLL with static timing correction
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• Feedback signal dominate dummy output by input assignment
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Detailed Voter circuit and Its dummy

• dvoter1 = Delay (f1clk_out)
• dvoter2 = Delay (f2clk_out)
• dvoter3 = Delay (f3clk_out)

Voter Circuit

V1 Circuit V2 Circuit V3 Circuit

• dv1 = Delay (f1fb1)
• dv2 = Delay (f2fb2)
• dv3 = Delay (f3fb3)



• Clk_out and {fb1, fb2, fb3} have similar phase

Since {fb1, fb2, fb3} in-phase with clk_ref

clk_out is roughly in-phase with clk_ref
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Timing Relationships after timing correction



Ideally, we have wished that 

Delay of {V1, V2, V3} = Delay of the “VOTER”

But in reality,

there could be mismatch due to process variation
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Process Variation Issue
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• Enhance FET-DLL incorporating a “dynamic timing correction”
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FET-DLL with Dynamic Calibration
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• Delay amount from input to output can be tuned by two level
• Tunable driving strength – controlled by b-code

• Tunable output capacitance - controlled by g-code
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Tunable Delay Element (TDE)
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Overall Online Calibration Procedure
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Calibration for one DLL At a time
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Once one DLL-instance is faulty …
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• The FET-DLL design using a 90nm CMOS process

• The primitive DLL instance is a synthesizable one in reference

23

Layout of FET-DLL with Dynamic Calibration 

Z.-H. Zhang, W. Chu, and S.-Y. Huang, “A Ping-Pong Methodology for Boosting the Resilience of Cell-Based Delay-Locked Loop", 
IEEE Access, Vol. 7, pp. 97928-97937, Aug. 2019.



• When there is a random timing drift at f1
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1st Post-Layout Simulation Scenario
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• When there is a short-pulse error at f1
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2nd Post-Layout Simulation Scenario
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• The performance of 4 versions of DLL design (5 Corners)
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Max. Phase Error Comparison
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Conclusion
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• FET-DLL with graceful degradation via a low-cost Excessive 
Phase Error Detector
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Future Work
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Future Work
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Thank you !


