
0

針對內建人工智慧之車用晶片且以

【零故障】為目標之智慧型測試方法

Process Resilient

Fault-Tolerant Delay-Locked Loop

IC-Design Exploration Lab
Department of Electrical Engineering
National Tsing Hua University, HsinChu, Taiwan

楊竣宇 (Darren J.-Y. Yang) 03/26

Using TMR with Dynamic Timing Correction

• Introduction

• Evolution of Fault and Error Tolerant (FET) DLL

• Experimental Results

• Conclusion

1

Outline

• Introduction
• Background

• Problem

• Objective

• Evolution of Fault and Error Tolerant (FET) DLL

• Experimental Results

• Conclusion

2

Outline

• In a heterogeneously integrated Multi-Die IC
• Functional dies are designed and fabricated with different process

• Important building blocks
• Phase-Locked Loop (PLL)

• Delay-Locked Loop (DLL)

3

Clock Distribution Problem

Clock
Source Point

PLL
s0

s1

s4s3

#1

#4#3

C.-Y. Cheng, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "DLL-Assisted Clock Synchronization Method for Multi-Die ICs", Proc. of
IEEE Int'l Conf. on Computer Design, pp. 473-476, Nov. 2017.

Interposer

s2
#2

• Objective: All Flip-Flop in each die receive clock at the same time

• Different dies  Different Within-Die Clock Latencies

 Flip-Flops (FFs) receive the clock signal with skews

4

DLL-Assisted Clock Synchronization

Clock
Source Point

s0

s1

s2

s3

s4

DLL-1

DLL-2

DLL-3

DLL-4

FF

FF

FF

FF

• The inter-die clock skew is to be minimized by inserted DLLs

• The width of a DLL box denoted as its input-to-output delay

• The basic DLL consists of 3 components:
• (1) Phase Detector (2) Controller (3) Tunable Delay Line (TDL)

• DLL will experience two stages:
• (1) Phase Locking (2) Phase Tracking

5

Architecture of a Basic DLL

Controller
Lead/Lag

clk_ref

lock

clk_out
Delay under

compensationTunable Delay Line

Control code

Phase Detector
(PD)

START

Phase
Locking

Phase
Tracking

Derive algorithm
find locking condition

Derive algorithm
maintain locking condition

clk_ref

clk_out

Before locking

clk_ref

clk_out

After locking

DT

• Definition of maximum phase error
• The worst-case phase error amount between clk_ref and clk_out

over a time frame (e.g., 1000 cycles) after the DLL is locked!

6

Performance We Care – Max. Phase Error

clk_ref Delay-Locked Loop
(DLL)

clk_out

clk_ref

clk_out

clk_ref

clk_out

100ps 10ps

Bad Good

• Build a Fault and Error Tolerant (FET) scheme for clock subsystem
• Especially for Delay-Locked Loop (DLL)

7

Objective of This Work

Fault Tolerance
Methodology

HW/SW
Redundancy

Information
Redundancy

Time
Redundancy

• Hardware redundancy is suitable for clock subsystem

• Active redundancy will need other circuit to monitor our DLL

• We take passive redundancy – Triple Module Redundancy (TMR)

8

Objective of This Work

Given
Primitive

DLL TMR

Fault and
Error Tolerant

DLL

Hardware
Redundancy

Passive
Redundancy

Active
Redundancy

Hybrid
Redundancy

 Fault-masking Detection
 Localization
 Containment
Recovery

 Passive +
Active

• Introduction

• Evolution of Fault and Error Tolerant (FET) DLL
• Naïve FET-DLL Architecture

• FET-DLL with static timing correction

• Process-Resilient FET-DLL with dynamic timing correction

• Experimental Results

• Conclusion

9

Outline

• Three primitive DLL decide the output through VOTER

• Each DLL performs their phase-locking simultaneously

10

Naïve FET-DLL Architecture

PD Ctrler-1

TDL
DLL-1

PD Ctrler-2

TDL
DLL-2

PD Ctrler-3

TDL
DLL-3

V
O
T
E
R

clk_ref clk_out

f1

f2

f3 VOTER is a majority function:
clk_out = f1‧f2 + f2‧ f3+ f3‧f1

{f1, f2, f3} are all locked to clk_ref
 Yet clk_out lags clk_ref

• The VOTER circuit takes time to calculate
• dvoter1 = Delay (f1clk_out)

• dvoter2 = Delay (f2clk_out)

• dvoter3 = Delay (f3clk_out)

• Max(dvoter1, dvoter2, dvoter3) greater than 100ps

11

Output Lagging Problem

• Fix the output-lagging problem
• Add dummy voter circuit on its feedback path

12

FET-DLL with static timing correction

PD Ctrler

TDL
DLL-1

PD Ctrler

TDL
DLL-2

PD Ctrler

TDL
DLL-3

V
O
T
E
R

clk_ref clk_out

f1

f2

f3

V1

V2

V3

VOTER is a majority function:
clk_out = f1‧f2 + f2‧ f3+ f3‧f1

V1 V2 V3

dummy voter circuit

{f1, f2, f3} are “one voter delay”
ahead of clk_ref
 clk_out is now

in-phase with {fb1, fb2, fb3}
in-phase with clk_ref

fb1

fb2

fb3

• Feedback signal dominate dummy output by input assignment

13

Detailed Voter circuit and Its dummy

• dvoter1 = Delay (f1clk_out)
• dvoter2 = Delay (f2clk_out)
• dvoter3 = Delay (f3clk_out)

Voter Circuit

V1 Circuit V2 Circuit V3 Circuit

• dv1 = Delay (f1fb1)
• dv2 = Delay (f2fb2)
• dv3 = Delay (f3fb3)

• Clk_out and {fb1, fb2, fb3} have similar phase

Since {fb1, fb2, fb3} in-phase with clk_ref

clk_out is roughly in-phase with clk_ref

14

Timing Relationships after timing correction

Ideally, we have wished that

Delay of {V1, V2, V3} = Delay of the “VOTER”

But in reality,

there could be mismatch due to process variation

15

Process Variation Issue

• Introduction

• Evolution of Fault and Error Tolerant (FET) DLL
• Naïve FET-DLL Architecture

• FET-DLL with static timing correction

• Process-Resilient FET-DLL with dynamic timing correction

• Experimental Results

• Conclusion

16

Outline

• Enhance FET-DLL incorporating a “dynamic timing correction”

17

FET-DLL with Dynamic Calibration

PD Ctrler-1

TDL
DLL-1

f1

V1
fb1

PD Ctrler-2

TDL
DLL-2

V2
fb2

0

1
0

1

PD Ctrler-3

TDL
DLL-3

V3
fb3

0

1
0

1

f2

f3
0

1

s3q3

w3

V
O
T
E
R

clk_ref clk_out

q1 s1

0

1

w1

w2

s2

0

1

q2

0

1
0

1

PD
clk_ref

clk_out
Lead/lag

Shared PD for Calibration• Delay (f1clk_out)
= Delay (f1fb1)

• Delay (f2clk_out)
= Delay (f2fb2)

• Delay (f3clk_out)
= Delay (f3fb3)

TDE

w

Calibration MUX
0

1q

s

• Delay amount from input to output can be tuned by two level
• Tunable driving strength – controlled by b-code

• Tunable output capacitance - controlled by g-code

18

Tunable Delay Element (TDE)

g[0]

b[0]

b[1]

b[22]

g[0] g[1] g[1] g[11] g[11]

in out

Coarse-Tuning Block

Fine-Tuning Block
b-segment when b=4

19

Overall Online Calibration Procedure

START
Wait until all three

Primitive DLLs are locked

Calibrate
DLL-1

Start normal
FET-DLL operation

Calibrate
DLL-2

Calibrate
DLL-3

END

Calibration of one
Primitive DLL block

Set
Calibration
MUX input

Tuning TDE
b code

Locked ?

Tuning TDE
g code

Locked ?

YES
NO

YES
NO

20

Calibration for one DLL At a time

PD Ctrler-1

TDL
DLL-1

f1

V1
fb1

PD Ctrler-2

TDL
DLL-2

V2
fb2

0

1
0

1

PD Ctrler-3

TDL
DLL-3

V3
fb3

0

1
0

1

f2

f3
0

1

w3

V
O
T
E
R

clk_ref clk_out

1
0

0

1

w1

w2

0

1

0

1
0

1

PD
clk_ref

clk_out
Lead/lag

Shared PD for Calibration

1

0

1

0

f1

f2

f3

10

01

01

f21

f30

21

Once one DLL-instance is faulty …

START
Wait until

Two DLLs are locked

Calibrate the first two
locked DLL instance

Check which two
DLL instances

have been locked?

Calibrate
DLL-1

Calibrate
DLL-2

Calibrate
DLL-1

Calibrate
DLL-3

Calibrate
DLL-2

Calibrate
DLL-3

DLL-1
DLL-2
locked

DLL-1
DLL-3

locked

DLL-2
DLL-3
locked

NO
Check if the last
DLL is locked ?

Start FET-DLL
Operation

FET-DLL
First Service
Starts Here!

YES

Calibrate the last
locked DLL instance

Start Fault-Tolerant
FET-DLL Operation

END

FET-DLL
Fault-Tolerant

Service
Starts Here!

• Introduction

• Evolution of Fault and Error Tolerant (FET) DLL

• Experimental Results

• Conclusion

22

Outline

• The FET-DLL design using a 90nm CMOS process

• The primitive DLL instance is a synthesizable one in reference

23

Layout of FET-DLL with Dynamic Calibration

Z.-H. Zhang, W. Chu, and S.-Y. Huang, “A Ping-Pong Methodology for Boosting the Resilience of Cell-Based Delay-Locked Loop",
IEEE Access, Vol. 7, pp. 97928-97937, Aug. 2019.

• When there is a random timing drift at f1

24

1st Post-Layout Simulation Scenario

clk_ref
clk_out

fb1
fb2
fb3
f1
f2
f3
c1
c2
c3

Output clk_out is not affected !

• When there is a short-pulse error at f1

25

2nd Post-Layout Simulation Scenario

short pulse

clk_ref
clk_out

fb1
fb2
fb3
f1
f2
f3
c1
c2
c3

Output clk_out is not affected !

• The performance of 4 versions of DLL design (5 Corners)

26

Max. Phase Error Comparison

DLL Version Max. Phase Error (ps)

Primitive DLL

(not fault/Error tolerant)
10

FET-DLL with Naïve TMR 130

FET-DLL with

Static Timing Correction
20

FET-DLL with

Dynamic Timing Calibration
11

45%

• Introduction

• Evolution of Fault and Error Tolerant (FET) DLL

• Experimental Results

• Conclusion

27

Outline

28

Conclusion

Given
Primitive

DLL

100%

Static Timing
Correction Scheme

Fault
Soft-Error

DLL

Triple Module
Redundancy

• Process Variation Problem
• Phase Error：20ps

Final Fault
Soft-Error

DLL

Process
Calibration

348%

Naïve
TMR
DLL

• Output Lagging Problem
• Phase Error：130ps

300%
+ 4NAND gates

Robust &
Resilient

300%
+ 16NAND gates

• FET-DLL with graceful degradation via a low-cost Excessive
Phase Error Detector

29

Future Work

FET-DLLclk_ref clk_out

Excessive
Phase Error Detector warning

30

Future Work

START
Wait until

Two DLLs are locked

Calibrate the first two
locked DLL instance

Check if the last
DLL is locked ?

YES

Start FET-DLL
Operation

NO

FET-DLL
First Service
Starts Here!

Calibrate the last
locked DLL instance

Start Fault-Tolerant
FET-DLL Operation

END

FET-DLL
Fault-Tolerant

Service
Starts Here!

Phase Error Detector

Hit Phase Error
Threshold

YES

Release
Threshold

Over 100
clock cycles

No

Add guard band to
phase error threshold

YES

NoPhase Error Detector

Hit Phase Error
Threshold

YES

Release
Threshold

Over 100
clock cycles

No

Add guard band to
phase error threshold

YES

No

31

Thank you !

